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1. INTRODUCTION

This research effort has its origins in an experimental study I of dynamically stable manipulation. The

interest in dynamically stable systems was driven by the objective of high vertical reach, for which human

balance was the inspiration, and the objective of planning inertially favorable trajectories for force and

payload demands, for which human (animal) efficiency was also the general inspiration. A double inverted

pendulum system was constructed as the experimental system for this mission, and the research effort led
to activities in non-linear control methods, in trajectory planning (still to be completed), and in the use of

model based control The findings from that last task form the main emphasis of this paper. Sections 2, 3

and 4 herein are drawn in large part from a recent workshop paper [5] paper; we then discuss in sections 5

and 6 two general areas by which this work is pertinent to space tele/robotics.

The design of a control system for manipulators is a formidable task due to the complexity of the nonlinear

coupled dynamics. The goal is the calculation of actuator torques which will cause the manipulator to follow

any desired trajectory. In a broad sense, two basic categories of control design are found in the literature.
The first contains the robust control methods in which the control is able to overpower the system's

nonlinear coupled dynamics. The second contains the model-based control (MBC) methods in which many

of the system nonlinearities are calculated using a systems dynamic model and the nonlinear system forces

are then canceled by actuation forces. Recent advances in computational hardware have made it possible

to evaluate in real time the equations of motion of robotic manipulators. Khosla [1]was the first to

demonstrate the feasibility of real time MBC using an inexpensive computer system for control of a six

degree of freedom manipulator, the CMU Direct Drive Arm II. The requirements for applying MBC can be

satisfied for many manipulators of practical interest to space applications. Basically, the system must be

amenable to mathematical modeling, and the mathematical model and the control law must be evaluated in

real time.

1The project was sponsored by the Department of Energy, Advanced Reactor and Nudear System Technology Support, Program
NE-85-001, under contract DE-AC02-85NE37947, Dynamic Stability for Robot Vertical Reach and Payload. We are indebted to Clint

Bastin of DOE for his particular interesl and support, and are most grateful to Westinghouse AES for their cooperation in

accommodating Mr. Petrosky's residence at Carnegie-Mellon. We further wish to acknowledge the contributions of Professors

I. Shimoyama and J. Bielak, and graduate student Eric Hoffman. Disclaimer: The view, opinions, and�or findings contained in this

report are those of the authors and should not be construed as an official U. S. Department of Energy or Carnegie-Mellon University

position, policy or decision, unless designated by other documentation.
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2. CONTROLAPPROACH

2.1.Computed-TorqueControl
Computed-torque [2] control is a model-based control scheme which strives to use the complete dynamic

model of a manipulator to achieve dynamic decoupling of all the joints using nonlinear feedback. The

dynamic model of the manipulator is described by the system equations of motion which can be derived
from Lagrangian mechanics:

N N N

£ Dij qj + £ £ Cjk(i) qj O, + gi = _i
j=l j=] k=]

for i= 1..... N. (1)

where the q are the joint coordinates. The .ti are the externally applied joint actuation torques/forces. The

inertial Dij , centrifugal and Coriolis Cjk(i), and gravitational gi coefficients of the closed-form dynamic robot
model in Equation 1 are functions of the instantaneous joint positions qi and the constant kinematic,

dynamic and gravity manipulator parameters. The kinetic energy gives rise to the inertial and centrifugal

and Coriolis torques/forces, while the potential energy leads to the gravitational torques/forces. Actuator

dynamics can be incorporated in the dynamic robot model by additions to the Lagrangian energy function.

The Computed-torque algorithm begins with a calculation of the required torque to be applied to each of the
joints (in vector notation):

(2)

where u is the commanded joint accelerations. The "~" indicates that these matrices are calculated from the

system model based on estimated system parameters. The resulting dynamic equations for the closed-loop
system are:

= U - D-I{[D - [)]U + [H - _1]

+ fg- <3)

If the system dynamic parameters are known exactly, then D = D, PI = H, and _1= g, then the closed loop

system is described by:

= u (4)

which is the equation for a set of decoupled second order integrators. This completes the formulation of the

modeling and feed forward decoupling functions of the algorithm.

The feedback control law for the commanded joint acceleration ui is formulated to incorporate the error
feedback signal and the reference signal. After decoupling, each joint acts as a second order integrator,

therefore the control law is given the form:

24



ui = qid - 2_Oa( iti- ilid) - °)2( qi- qia) (5)

which causes each joint to act as a second order damped oscillator with natural frequency m and damping

ratio _. The form of the equation causes the joint to track the desired joint values q,_, ,_, and _/,_.

The computed-torque control defined above is based on the assumptions that the system model is accurate

and that all joints are actuated. In our experimental effort the dynamic parameters of the manipulator were

manually measured to provide an accurate system model. We assume in all simulations that the dynamic

model is accurate. Our experimental system, the double inverted pendulum depicted in Figure 1, does not

conform to the second assumption (in that all joints are not actuated) and therefore the algorithm was

extended as described in the next section.

2.2. Application to Balancing

Consider first the simplest balancing problem, the planar single inverted pendulum. Balancing is a fourth

order control problem with a single input and in the context of this article is equivalent to controlling two

manipulator joints with a single actuator. The presumption of the computed torque algorithm, that all joints

are actuated, does not apply. However, a suitable control law was found by Petrosky [3]; that method,

called hierarchical partitioning, is directly applicable to the balancing problem, is robust, and can be

integrated with MBC. The balancing problem is partitioned into two second order subsystems, tilt and

position. The input signal, base position acceleration, has a component driving the tilt subsystem. The tilt in

turn is considered as the input to the position subsystem. This cascaded pair of subsystems is then

controlled by a pair of control laws of the form of Equation 5 with the tilt subsystem given a faster time

constant. By removing internal variables from the cascaded system, a nonlinear balancing control law is

obtained for the manipulator base position variable. This is combined with the computed-torque control for

the actuated joints to complete the manipulator control algorithm.

2.3. Determination of Applied Forces

Indirect determination of applied forces (Le. without the use of load sensors) is accomplished by

comparison of the manipulator mathematical model and the observed manipulator behavior. A simple

example of this is the algorithm for payload determination for the balancing manipulator. Payload

estimation can be performed for a balancing manipulator on-line in real time. Consider the equation of

motion for pivoting about the base of the dynamically balanced manipulator:

N N N

"[i = £Dijqj + ££Cjk(i)_ljtlk + gi

j=l j=l k=l

for i = base rotation (6)

The base joint of a balanced manipulator is not actuated, therefore 1;i = 0. However, if the payload value is

incorrect, then this equation will evaluate to a non-zero value of i;i when the observed values of the joint

variables are entered. The difference indicates the value of the payload which is given by:

O_i' l

= - (V)- (7)
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where ,_ is the difference between the actual payload and the current estimated value. Under ideal

conditions this equation would yield the correct payload value in a single sample; however, the accuracy of

the values for _j can be exceedingly poor if obtained by double differentiation of position measurements.
This was the case in the experimental system, but the problem was overcome by the use of a parameter
estimator.

3. EXPERIMENTAL SYSTEM

The experimental manipulator is a planar double inverted pendulum as depicted in Figure 1; the system is

presumed to traverse an approximately level surface, and requires constant active balancing motions. In its

plane of motion there are three degrees-of-freedom: translation of the base position, ql, rotation of the lower

arm with respect to the vertical, q2, and rotation of the upper arm with respect to the lower arm, q3. It is q2
which is not directly controlled in this system. The manipulator has a servo driven wheeled base, a hinged

connection (free rotation) to the lower arm section, an elbow joint which is servo driven, the upper arm, and

an electro-magnet pickup at the tip. It is constructed primarily of aluminum and has a total weight of 13 kg;

the tip of the manipulator can reach a height of 1.8 meters in an erect stance.

The wheeled base and the elbow joint are driven by Aerotek servos rated at 1.3 N-m peak torque. The
elbow joint has a chain reduction ratio of 57.6:1 and the drive wheels have a chain reduction of 4.8:1. The

chain reduced servo arrangement was chosen over direct drive to save weight, and over gear-reduced or
harmonic drive to mitigate costly damage in the event of a severe floor collision.

The sensors utilized for manipulator control are:

• Inclination RVDT - a rotary differential transformer measures the angle between the floor
surface (via a feeler) and the lower arm.

• Motor Encoders - each servo has an optical encoder of 500 counts per revolution which runs a
hardware counter read by the parallel interface board.

The control system hardware consists of a Motorola M68000 based single board computer as the master

CPU, a Marinco Array Processor Board (APB), an Analog to Digital Converter (ADC) 32 channel input

board, a Digital to Analog (DAC) 4 channel output board, a 96 line Parallel Input/Output (PIO) Interface

board, and a terminal. The Marinco APB, with an instruction cycle of 125 ns, is used to perform the

calculation intensive operations required to implement MBC. The board has fixed point multiplier and

addition hardware which are used for floating point operations. The floating point addition or multiplication

routines execute in approximately 1 Its. Negation requires 125 ns. Computation of the sine/cosine pair

requires 15 _s. Additional routines perform data type conversion and other functions required to format
sensor data.

Manipulator trajectory calculations are handled by the M68000 CPU on a time sharing basis. In operation a

timer interrupts the CPU at each sampling interval. The CPU copies the sensor data to the APB memory

and initiates APB execution. The APB formats the data, does scaling operations, performs the

trigonometric functions, and then calculates the inverse dynamics. The formatted output data is ready in
less than 0.5 ms. Data needed for control are returned to the CPU, which outputs them to the DAC's.

Cycle time is sufficiently fast for the control algorithm and dynamic model to be evaluated at a sampling

frequency in excess of 1000 Hz. However, 100 Hz appeared to be more than adequate for the

experimental system.
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4. EXPERIMENTAL RESULTS

The experimental manipulator was fully reliable in maintaining balance for long periods while performing a

variety of tasks. The base moves approximately +3 mm to maintain balance and the tilt varies by +0.0063
radian. This motion does not indicate a flaw in the balancing algorithm, but rather the motion results from

being at the limit of tilt resolution of the RVDT sensor used with the floor feeler; the RVDT signal variation

corresponds to the magnitude of a single digital count. Because the base dimension of the experimental

system is zero, it is physically impossible for the manipulator to balance without some minor motions.

The manipulator proved very resistant to upset; its recovery ability appears to exceed that of a human under

similar magnitude disturbances. Figure 2 records the transient response of the manipulator to a severe

impact applied 0.3 seconds into the record. The manipulator moved forward in order to balance, translating

0.75 meters, and then quickly returned to its original base position. Rotation through a range of 0.25

radians is recorded for the lower arm. The manipulator was also extremely forgiving (compliant) of collision.

The manipulator would bounce lightly off an obstacle and come to rest simply leaning against it. When

commanded to back away from the obstacle, the manipulator would resume balancing as soon as contact
was broken.

Figure 3 records the transient response of the manipulator under the application and removal of a payload

at the tip, with the upper arm near the horizontal; the payload was 0.811 kg, and the tip position was offset

horizontally by 0.8 meters from base position. The time histories of ql and q2 reflect the payload applied at

5 seconds, removed at 13 seconds, and applied again at 19 seconds. The presence, magnitude, and

location of the payload was determined indirectly as discussed in section 2.3; the information was used to

adapt the control scheme by updating the sytem model. Figure 3 shows the trace of this payload estimation

process, which is noteworthy for its accuracy. In this manner it was possible to adapt to large payloads,

demonstrated experimentally with ease up to 3.2 kg, or 25% of the total system weight. A payload

estimation record from ongoing balancing in the absence of payload (not shown) demonstrates a typical

noise level of +26 gm, which is only 0.2% of the system mass.

Another experiment demonstrated the successful development and control of lateral force through the

motion of the system masses. A chain connected the manipulator to a heavy mass on a rough table, and

the manipulator was used to pull the mass against the force of friction through some target distance. The

manipulator developed a lateral force through the movement of its mass center to a point behind its wheel

axis; the system them maintained control through the motion ensuing as the lateral force exceeded the

friction force, in much the same way that a human would pull a heavy weight accross a floor. Another

experiment demonstrated the pickup of the 3.2 kg payload from the floor to an overhead height of 1.8m.

The vertical force required to raise the mass was generated by placing the manipulator system masses at

great eccentricity to the payload; this effect, and subsequent control of the system, closely resembled a

weightlifter's clean-and-jerk.

5. APPLICATION OF MODEL BASED CONTROL TO SYSTEMS WITH FLEXIBLE LINKS

MBC has potential space tele-robotic application for manipulators with flexible links. In principle,

information available from the on line system model can be utilized to adjust controller gains to the current

manipulator configuration. We observe (but do not discuss further) that joint-flexible manipulators, in which

flexibility effects are confined to revolute joints, would be controllable in all configurations. We direct our
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attention at manipulators characterized by linear elastic link bending effects, and presume in our discussion

that lumped parameter modelling can apply. Such manipulators are difficult to control because there are

many additional system degrees-of-freedom (the "deformation variables" introduced in modelling the

flexibility effects) and because some flexural modes may be poorly coupled in the inputs. In this section we

develop specialized equations of motion and discuss the potential for the application of MBC using modal

decomposition.

Flexible manipulators undergo quasi-periodic oscillations due to elastic deformation. These vibrations

develop in response to actuated motions and disturbances. Small vibrations of this type normally

decompose into orthogonal modes. This holds true for a manipulator only if it is not undergoing gross

motion. As a result of the nonlinear manipulator dynamics, oscillations in the structure exhibit cross terms

which negate modal orthogonality. This effect can be deduced from the equations of motion. Equation 1,

the manipulator equations of motion, can be expanded for a manipulator with flexibility; deleting summation

symbols for purposes of clarity, it becomes:

xi = Oij _Jj + Cjk(i)ilj ilk + gi + rlj qj

for i = 1..... M. (8)

where q also includes required deformation degrees of freedom. Consider a decomposition of the q into a

vibration component, &q, plus an equilibrium trajectory component, q. Substituting into Equation 8 and

segregating the terms for vibration yields:

"ti + &Ci =

Dijqj + Cjk(i)qjilk + gi + Kijqj

+ Dij _-_!;"+ 2Cjk(O qj 8ilk + Cjk(i) 84j 84k

+ Kij 8qj for i = 1..... M. (9)

Because the equilibrium trajectory portion of the equation by definition satisfies Equation 8, the remaining

terms for the vibration component yield the governing equation of motion for vibrations:

for i = l ..... M. (10)

We see that velocity cross terms exist if the manipulator is in motion. If the amplitude of vibration is small

the equation linearizes. The D, C, and K are constant and the Cjk(O _lj _lk term is ignored. The free

vibration (i.e. 8"ci = 0) portion of the manipulator motion forms a linear dynamic system:
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for i = 1..... M. (ll)

M

where Bij = £ 2 Cjk(i) 4j
j=l

The B matrix appears in the role of a damping term, however due to its form no vibrational energy is lost,

only exchanged among the modes. If the manipulator is stationary, qj = 0, then it behaves like an

undamped multiple degree of freedom elastic structure. To achieve stable control it is necessary to use the

system inputs to add damping to the vibration equation.

In principle, such a manipulator would remain amenable to mathematical modeling. The computational

burden of calculating a manipulator stiffness matrix is low compared to calculating the dynamic parameters,

except that for the link flexible manipulator the entire system has more degrees of freedom. However, a
valid control scheme which utilizes the model of the flexible manipulator is significantly more complex that

for its rigid counterpart. Nonlinear decoupling such as achieved by the Computed-Torque method cannot be
anticipated in most cases for flexible systems. Considering next modern control theory methods for pole

placement in Multiple-Input Multiple-Output (MIMO) systems, since the system model in MBC can be

continuously updated for the current manipulator configuration, MIMO pole placement control would have
available at all times a model to linearize for control feedback gain calculation. However, preliminary

evaluation of MIMO pole placement indicates that the methods involve numerous matrix inversions, and

would not be suited to online implementation using current microprocessors.

An alternate control scheme to discuss is modal decomposition. Presumably, free vibration mode shapes

can be calculated based on the system model. Once calculated, modal decomposition of the system

dynamic equations and determination of input gains would be straightforward. It appears feasible to

determine control gains by specifying the required modal damping matrix and calculating the resulting

required actuator inputs. The calculation burden for this control scheme is high because of the eigenvector
calculation, but appears to be within the capability of current technology. If proven feasible, this method

represents an excellent solution to the flexible manipulator problem.

6. TRAJECTORY PLANNING FOR UTILIZATION OF INERTIAL EFFECTS

Trajectory planning utilizing inertial effects promises efficiencies of great significance to space applications.

The payload experiments described at the conclusion of section 4 exemplify these efficiencies at an

informal level. More broadly, in this category of trajectory planning one would find minimum energy paths,

minimum energy-density paths, minimum time paths, minimum torque paths, and so on. One would also

find paths which represent favorable matches between actuator capacities and task requirements. This
work is the doctoral research objective of the first author [4] and is currently under investigation. Its pursuit

is supported by the MBC capabilities described herein, but is not a direct extension of them. Therefore this

brief section is less prescriptive and more descriptive than the discussion of MBC for flexible manipulator

control.
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Optimal control can solve certain of these problems, such as the minimum time path, and mathematical

approaches exist which (under restrictions) can solve others, such as the geodesic for the minimum energy

path. Our interest is in approximate approaches which can be framed more generally, and which can be

calculated on-line, though not necessarily in real-time. A number of approaches are being studied,

including evaluation of different abstractions for use as objective functions, and various mappings of inertial

space from which approximate paths might be determined.

7. CONCLUSIONS

The feasibility of utilizing real time Model Based Control (MBC) for robotic manipulators has been

demonstrated. The experimental results demonstrate the effectiveness of the control approach, balancing,

and of the payload estimation/adaptation algorithm developed for this effort. The mathematical modeling of

dynamics inherent in MBC permit the control system to perform functions that are impossible with
conventional non-model based methods. These capabilities include:

• Stable control at all speeds of operation;

• Operations requiring dynamic stability such as balancing;

• Detection and monitoring of applied forces without the use of load sensors;

• Manipulator "safing"via detection of abnormal loads;

• Control of flexible manipulators.

This work directly demonstrates the first two capabilities and indicates the feasibility of the additional

capabilities. The control of flexible manipulators is a particularly important potential application because this

problem has proven very difficult to solve. This technology also supports our work on trajectory planning for
favorable utilization of inertial forces.
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Figure 1. Experimental Manipulator
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